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Fig. 1. Given an initial layout and a target layout, our approach automatically generates a move plan to transform the initial layout into the target layout. The
move plan consists of a sequence of move actions. Each move action includes selecting an object and generating a path to move the object. Our approach,
dubbed Scene Mover, is devised based on a Monte Carlo tree search (MCTS) driven by a novel network learned through deep reinforcement learning.

We propose a novel approach for automatically generating a move plan for
scene arrangement.1 Given a scene like an apartment with many furniture
objects, to transform its layout into another layout, one would need to deter-
mine a collision-free move plan. It could be challenging to design this plan
manually because the furniture objects may block the way of each other if
not moved properly; and there is a large complex search space of move action
sequences that grow exponentially with the number of objects. To tackle
this challenge, we propose a learning-based approach to generate a move
plan automatically. At the core of our approach is a Monte Carlo tree that
encodes possible states of the layout, based on which a search is performed
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to move a furniture object appropriately in the current layout. We trained a
policy neural network embedded with a LSTM module for estimating the
best actions to take in the expansion step and simulation step of the Monte
Carlo tree search process. Leveraging the power of deep reinforcement learn-
ing, the network learned how to make such estimations through millions of
trials of moving objects. We demonstrated our approach for moving objects
under different scenarios and constraints. We also evaluated our approach
on synthetic and real-world layouts, comparing its performance with that
of humans and other baseline approaches.
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1 INTRODUCTION
People rearrange layouts from time to time. An event planner may
rearrange a banquet hall for hosting different parties. A store man-
ager may rearrange his store to give customers a refreshed look.
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A family may rearrange their home to accommodate the changing
space needs of their kids.

To rearrange a layout, people generally take two steps: (1) design-
ing a new layout and (2) moving all objects to their new positions. A
number of approaches [Fu et al. 2017; Li et al. 2019;Wang et al. 2019a,
2018] were proposed recently for synthesizing desirable furniture
layouts compatible to a room. These efforts automate the task of
layout design for the first step. However, an automatic approach for
moving the furniture objects in the current layout to their desired
positions in the target layout is missing.
Generating a plan to move objects from an initial layout to a

target layout is challenging. It involves deciding a valid sequence of
move actions of many objects. People who reconfigured their home
layouts may have this experience: trying to move furniture objects
to desired positions, they had to go through multiple rounds of trials
and errors with wasted efforts; a piece of furniture which had been
moved to its desired position might need to be moved again to make
way for another piece of furniture.

The difficulty of creating such a move plan arises from sequential
and long-term decision-making. Making proper sequential decisions
could be unintuitive because moving an object to its target position
usually is not a one-step process. For example, to move a dining
table to a new position, one may first need to move all the chairs
around the table to some temporary positions. Making proper long-
term decisions could also be tricky as the movement of an object
may affect the subsequent movements of other objects. An object
moved earlier on may block the way of other objects trying to get
into their target positions, which could only be resolved by undoing
the former movements.

Finding a feasible sequence of move actions by exhaustive search
is hard due to the exponential search complexity. Suppose there are
10 objects in a scene and each object can move in 4 directions (up,
down, left, and right). If the length of a move action sequence is 10,
there will be 4010 possible sequences of move actions, making an
exhaustive search difficult. One may rely on a rule-based approach
to find a solution, e.g., moving bigger objects to their target positions
first. However, designing a set of effective rules is difficult, which
are generally abstracted from empirical knowledge gained from a
lot of trials. On the other hand, it could be difficult to decide which
rule to apply based on the current layout.

To address the sequential long-term decision problem, we propose
the Scene Mover approach to yield a move plan automatically. Scene
Mover can be considered as an agent trained by deep reinforcement
learning for moving objects. Given an initial layout and a target
layout, the Scene Mover agent generates a move plan comprising a
sequence of objects selected to move and their move paths. We train
a neural network that leverages the power of deep reinforcement
learning to learn the mapping from the layout space to the expected
accumulated rewards of move actions. Using a LSTM module, the
network also models temporal causality by considering historical
movement information.
To enable long-term decisions, we introduce a Monte Carlo tree

search (MCTS) to capture the causality between the current and
future actions. We define a sparse action space consisting of some
primitive actions for shortening the move action sequence so as to
improve the search efficiency.

Our approach comprises two main stages. In the first stage, it
trains a deep reinforcement learning network which estimates the
priors of the move actions for MCTS. In the second stage, it employs
a MCTS approach which embeds the trained network to make deci-
sions to generate a move plan iteratively. In each step of the MCTS,
our approach selects an object and applies a path for moving the
object. This is repeated until all objects reach their target positions.

Our approach automates the generation of a move plan for scene
arrangement and facilitates the realization of scene designs, leading
to potential applications such as warehouse automation and smart
homes with movable furniture. It also provides insights into other
sequential decision-making design problems such as reconfigurable
product designs.

Major contributions of our work include:
• Proposing a novel problem of automatic move planning to
transform an initial layout into a target layout, which can
complement a scene synthesis algorithm for realizing a syn-
thesized scene layout.

• Proposing a deep reinforcement learning-based Monte Carlo
tree search approach for solving the move planning problem.

• Performing experiments to evaluate the effectiveness and
performance of our approach, as well as comparing it with
humans and other baseline approaches. We also demonstrate
how our approach can be applied to move objects under
different practical scenarios and constraints.

2 RELATED WORK

2.1 Scene Synthesis
There are considerable research efforts spent on synthesizing fur-
niture arrangements and indoor scene layouts [Fisher et al. 2015;
Fu et al. 2017; Li et al. 2019; Qi et al. 2018; Yu et al. 2011], as well as
building layouts [Merrell et al. 2010; Peng et al. 2014; Wu et al. 2018].
Merrell et al. [2010] proposed a data-driven method to generate
residential building layouts. A Bayesian network is trained based on
example architectural programs to model the relationships among
different rooms. Yeh et al. [2012] specified priors over which objects
may occur and object spatial relationships for synthesizing scenes.

Another stream of works focused on data-driven scene synthesis.
Yu et al. [2011] extracted hierarchical and spatial relationships for
different furniture objects, encoding them into priors to synthesize
realistic furniture arrangements. Qi et al. [2018] learned layout
distributions from an indoor scene dataset, which were sampled to
generate new layouts. Human contexts were also considered in the
synthesis. Wang et al. [2018] used deep convolutional networks to
learn priors capturing object existence and spatial relationships for
generating scenes. Very recently, significant progress has been made
on using deep convolutional generative model [Ritchie et al. 2019],
graph-based generative model [Wang et al. 2019a], and generative
recursive autoencoders [Li et al. 2019] for indoor scene synthesis.
In contrast to the scene synthesis approaches, which consider

aesthetics, functionality, and general human activities to generate
reasonable scenes, our approach focuses on how to realize the syn-
thesized scene layout. Our approachmay complement existing scene
synthesis approaches to fill the gap between design and realization.
For example, a user may apply a scene synthesis approach to syn-
thesize a layout for an apartment. Then he may apply our approach
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to generate a move plan to move furniture objects from the existing
initial layout to the synthesized layout.

2.2 Path Planning
Path planning is another line of research relevant to our problem.
Path planning has been broadly applied for robot navigation [Gayle
et al. 2005; van den Berg et al. 2009], aerial vehicles [Best et al.
2017], and agent simulation [Sud et al. 2008]. Roughly, path plan-
ning approaches are divided into three categories: roadmap, cell
decomposition, and artificial potential. Please refer to a survey [Gas-
paretto et al. 2015] for a comprehensive review of path planning.
Roadmap approaches, such as visibility graphs [Alexopoulos

and Griffin 1992; Wang et al. 2020], Voronoi diagrams [Garrido
et al. 2011], Delaunay triangulation [Jan et al. 2014], map free
space connectivity into a system of curves. Cell decomposition
approaches [Brooks and Lozano-Perez 1985] divide the free space
into small cells and use a connectivity graph to represent the adja-
cency relationships between cells. To search for a path in a graph
constructed by a roadmap or a cell decomposition approach, a search
algorithm such as A* [Hart et al. 1968] is applied.
Different from path planning, our approach generates a move

plan. It computes not only a plausible path for each object, but also
a global strategy of the overall move action sequence to ensure that
each object reaches its target position. A different setting is multi-
agent path planning. Previous works handled this setting using
optimization approaches [Biswas et al. 2017]. If moving objects
simultaneously is not essential, our approach could be applied to
generate a sequence of movements of objects to achieve the goal.

2.3 Sequential Decision Making
In our work, we represent the problem of moving a set of objects
to their target positions as a sequential decision problem, which is
formulated as a Markov decision process.
Sequential decision-making refers to following a procedural ap-

proach or a step-by-step decision theory for decision-making, where
the early decisions influence the subsequent available choices [Frank-
ish and Ramsey 2014]. Sequential decision problems are commonly
formulated as Markov decision processes. Such problems represent
a wide range of real-world tasks such as robot control [Kober et al.
2013], game playing [Silver et al. 2016; Wiering and Van Otterlo
2012], and military planning [Aberdeen et al. 2004]. In particu-
lar, using sequential decision methods to play games, e.g., com-
puter chess [Campbell et al. 2002], Go [Silver et al. 2017], and Atari
2600 [Hausknecht and Stone 2015], is an appealing application.

2.4 Rearrangement Planning
Robotics researchers have been studying the rearrangement plan-
ning problem. In the robotics field, considerable efforts have been
spent on accomplishing tabletop rearrangement tasks using a robotic
arm with nonprehensile actions like pushing. Comparing to actions
like grasping or picking up objects [Labbé et al. 2020], nonprehen-
sile actions are easier to execute. However, collisions with static
objects need to be avoided when applying nonprehensile actions
for rearrangement, causing additional challenges.

Fig. 2. Different move action sequences may succeed or fail to realize the
target layout from the initial layout. The red numbers show the moving
order of the objects. The yellow dashed arrow refers to a blocked path.

A rearrangement task generally comes with a certain target con-
figuration of the objects. In this case, some works [Yuan et al. 2019,
2018] focused on planning the specific motions of the robotic arm
to rearrange objects. For example, a scene had only one moveable
cube and the goal was to find a collision-free move path to push the
cube to its target position. An alternative rearrangement setting is
based on object clustering [Song et al. 2019], where each object has
a certain target region that it should move to.
Some works [Haustein et al. 2019, 2015; King et al. 2016, 2017;

Koval et al. 2015; Song and Boularias 2019] targeted at multi-object
rearrangement planning. They solved the problem in two stages,
namely, a local path planning stage and a global strategy searching
stage. In the local path planning stage, they used a RRT-based path
searching alogrithm to find a valid path. In the global strategy stage,
they employed heuristic tree searches.
Prior works in robotics focused on realizing the algorithm on a

real robot, simplifying the rearrangement task complexity as possi-
ble to facilitate the adoption of a global strategy. For instance, the
objects are often assumed to have regular shapes (e.g., cubes, cylin-
ders). The poses of the objects are usually not considered because
it is hard to orient objects via nonprehensile actions. The scenes
usually have few or no obstacles and boundaries. In contrast, our ap-
proach aims to rearrange furniture objects in realistic indoor scenes
with substantial complexity, comprising many irregularly-shaped
objects placed densely as well as irregular obstacles and boundaries
(e.g., walls, pillars). As conventional search-based algorithms could
hardly cope with such scene complexities, we propose a novel neural
network and adopt deep reinforcement learning to learn a planning
policy by trial and error.

2.5 Deep Reinforcement Learning
Reinforcement learning is a strategy for solving the sequential deci-
sion problem. It is an experience-driven learning approach, in which
an agent learns through trial-and-error interactions in a dynamic
environment. With the significant progress of deep learning, rein-
forcement learning also benefits from incorporating deep learning,
leading to deep reinforcement learning (DRL) approaches.
Anthony et al. [2017] presented Expert Iteration (EXIT), a rein-

forcement learning algorithm which decomposed the sequential
decision problem into separate planning and generalization tasks.
EXIT showed good performance in training a neural network to
play the board game Hex. Silver et al. [2017] applied AlphaZero to
the games of chess, shogi, and Go without any additional domain
knowledge except the game rules, demonstrating that a general-
purpose reinforcement learning algorithm could achieve superior
performance across many challenging domains. Different from the
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Fig. 3. Overall search process of Scene Mover. A sequence of search trees are created to produce a sequence of move actions. At each iteration, the search tree
grows and gets updated through performing many rounds as shown in Fig. 4.

Fig. 4. Four steps in one round of search tree update.

games, our scene rearrangement task is a real-world task. We design
representation and action space to facilitate move planning. Our
method also takes the characteristic of sequential decision making
into account. We introduce the LSTM layer into the Q-network so
as to leverage historical move information.
Levine et al. [2018] proposed to learn control policies for robots

directly from camera inputs in real world. Mnih et al. [2015] in-
troduced Deep Q-Network (DQN), which stabilized the training of
Q-function approximation with deep neural networks. The algo-
rithm performed well on 49 Atari games. Andrychowicz et al. [2016]
cast the design of an optimization algorithm as a learning prob-
lem, allowing the algorithm to learn to perform more efficiently.
O’Donoghue et al. [2016] proposed to combine policy gradient with
off-policy Q-learning (PGQ) to benefit from experience replay.

In our work, we leverage deep reinforcement learning techniques
to train a neural network for estimating the long-term reward for
each proposed move action. We apply the network to search for a
move plan to achieve scene rearrangement automatically.

3 OVERVIEW
Our goal is to find a feasible move plan following which all objects
in the initial layout can be moved to their target positions in the
target layout. The move plan consists of a sequence of move actions,
where each action represents selecting one object in the current
layout and taking a path to move the object to a new position.
In the move plan, all actions are coherent, that is, selecting and

moving one object will affect another action in the future. This is a
long-term decision problem. For example, as shown in Fig. 2, the

bed moved earlier on may block the way of the bookshelf moved
later, causing failure in realizing the target layout.

To deal with such a long-term decision problem and to accomplish
the moving task efficiently, we propose a Monte Carlo tree search
approach embedded with a neural network to search for a feasible
move plan. In this section, we give an overview of our framework.

3.1 Monte Carlo Tree Search
Due to the enormous search space of move plans, an efficient search-
ing strategy is crucial. We adopt the Monte Carlo tree search (MCTS)
framework to solve the search problem as shown in Fig. 3. The main
idea is to construct a sequence of search trees to create a sequence
of move actions iteratively. Each search tree corresponds to one
move action decision.

3.1.1 Tree Structure. Fig. 4(a) shows an example search tree. A
search tree is a rooted tree. Each node represents a layout after taking
a sequence of move actions from the root node. The root node refers
to the current layout. A node and its child nodes are connected by
edges. By executing an action (i.e., selecting an object and moving
it along a certain path), the layout represented by the parent node
is transformed into the layout represented by the corresponding
child node. Each node stores a Q-value, which refers to the expected
future accumulated rewards for achieving the target layout starting
from the layout represented by that node.

3.1.2 Search Tree Update. To decide on a move action, a search
tree grows and gets updated formany rounds to produce a “final tree”
based on which the decision is made. A round of update involves
four steps as shown in Fig. 4:
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(a) Selection: In this step, a node which if expanded may lead
the search towards finding a feasible move plan to reach
the target layout, is selected to expand the search tree. The
selection is performed by searching the child node with the
maximumQ-value starting from the root node. In Fig. 4(a), the
node highlighted in blue, which has the maximum Q-value,
is selected. We discuss details of the selection in Sec. 6.

(b) Expansion: If the selected node does not represent the target
layout, a legal action is chosen according to some policy and
is applied to create a child node (referred as “expanded node”).
In Fig. 4(b), the node highlighted in blue is the expanded node.
The action taken is to move an object towards its up until an
obstacle is reached. We provide details of the types of move
actions in Sec. 4.2.

(c) Simulation: Based on the expanded node, a simulation is
performed. During the simulation, a sequence of move ac-
tions are chosen according to some policy and are performed
to transform the layout until a terminal layout is reached (e.g.,
reaching the target layout or the maximum number of simu-
lation steps allowed). A simulation process is depicted by the
dashed box in Fig. 4(c). After the simulation, the Q-value of
the expanded node is updated according to the accumulated
rewards of the move actions applied during the simulation.

(d) Back Propagation: Q-value updates are back-propagated
from the expanded node towards the root node. All the ances-
tor nodes along the path from the expanded node to the root
node (highlighted in blue in Fig. 4(d)) have their Q-values
updated with the rewards associated with the edges (which
denote move actions taken).

3.1.3 Move Action Decision. By performing these four steps, the
tree grows and is updated in each round. A certain number of rounds
are applied to grow the tree into a final tree, based on which a move
action decision is made to modify the current layout by a step (e.g.,
moving an object towards its right).

3.1.4 Overall Search Process. Fig. 3 shows the overall search
process to generate a sequence of move actions. Starting from the
initial layout, at each iteration a search tree is grown into a final
search tree. Out of the actions associated with the final search tree’s
root node (referring to the current layout), the action that leads to
the child node with the maximum Q-value is chosen to update the
current layout. In addition, the subtree rooted at that child node
is used as the initial search tree for the next iteration. As depicted
in Fig. 3, in the i-th iteration, ai is the move action chosen. The
subtree in the blue dashed box is used as the initial tree in the
i + 1-th iteration. The iterative process continues until the target
layout is reached. This process results in a sequence of move actions
(a1,a2, · · · ,an ) as the output for moving the furniture objects step
by step.

3.2 Reinforcement Learning of Q-Network
The performance of MCTS depends on the policy used in the expan-
sion and simulation steps. In the expansion step, the policy guides
the search to explore move actions which are likely to lead to the

target layout. In the simulation step, the policy helps to choose ac-
tions for evolving the layout represented by the expanded node for
a number of times so as to obtain a good estimate of the expanded
node’s Q-value, which is back-propagated to update the Q-values
of its ancestor nodes.
Our approach trains a neural network to facilitate the search

process. The goal is to maximize the expected return, i.e., cumulative
discounted reward, in the task of transforming an initial layout into
a target layout. To achieve such training, we apply the unsupervised
learning strategy of reinforcement learning through trials and errors.
On the other hand, we leverage the powerful function approximation
properties of deep neural networks to regress the policy function.
We discuss the training process in Sec. 5.1.

After training, given the current layout, the Q-network can be em-
ployed to predict the Q-value of the layout resulting from applying
each move action on the current layout. The Q-network is employed
to choose move actions in such a way in the expansion and sim-
ulation steps, i.e., choosing a move action to create the expanded
node in the expansion step and choosing move actions to evolve
the layout represented by the expanded node in the simulation step.
As the network is trained by many trials on many different layouts,
compared to a simple rule-based policy, it is general, scalable and
can tackle complex scene arrangement scenarios.

4 FORMULATION

4.1 Problem Definition
Given an initial layout lI and a target layout lT , the goal of our
approach is to generate a feasible move plan, i.e., generating a move
action sequence A = (a1,a2, ...,an ), following which lI is trans-
formed into lT . ai ∈ A and A represents the move action space.

Formally, the goal of our approach is tomaximize the accumulated
reward for transforming the initial layout lI into the target layout
lT by a sequence of move actions:

argmax
A

∥A∥∑
t=1

r (lt ,at ), (1)

where l1 = lI and l ∥A∥+1 = lT . r (l ,a) : (L,A) → R is a reward
function. lt is the root layout of the search tree at the t-th move
action decision state. lt = e(lt−1,at−1), where e(l ,a) : (L,A) → L

is an environment simulator. Given a layout lt−1 and an action at−1,
the simulator returns the next layout lt obtained after performing
the action at−1.

OccupancyEmpty

Fig. 5. Discretization of
an object in the layout.

4.1.1 Layout Representation. A layout l
is represented as a series of matrices. A 3D
scene is first projected onto the floor plane
from a top-down view. Then we discretize
the projection into aM×N grid. The objects
in the layout are denoted as O = {oi }. The
ith object is represented as aM ×N matrix,
whose element stores the occupancy of the
object, i.e., whether the object is projected
onto the corresponding cell (Fig. 5).
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4.2 Reinforcement Learning
4.2.1 Move Action. A move action is represented by a pair a =<

oi ,p >, oi ∈ O,p = (< x1,y1,ϕ1 >, < x2,y2,ϕ2 >, · · · ). oi is the
object chosen to move. p is the move path which is an ordered
sequence of tuples. Each tuple consists of the x , y coordinates and
the orientation ϕ, meaning that the center of the object oi is moved
to (x ,y) with an orientation of ϕ. We discretize the orientation of
an object into 24 bins with an interval of 15◦.
Path Types: We define five types of paths to move the chosen object.
That is, p ∈ {p1,p2, · · · ,p5}. The first four types of paths refer to
straight paths defined as moving an object straightly along the up
(p1), down (p2), left (p3), or right (p4) direction until the moved object
reaches an obstacle (i.e., another object or the wall). Comparing to
moving an object cell by cell, moving an object following one of
these paths greatly shortens the move action sequence in general.

The fifth type of path (p5) refers to a collision-free path searched
from the object’s current position to the the object’s target position.
Such a path is searched through an A∗ search algorithm [Hart et al.
1968]. At each step along this path, the object is able to move to any
of its four adjacent cells as long as there is no collision with any
obstacle. Note that we also allow the object to dodge obstacles by
adjusting its orientation along the path. The fifth type of path does
not exist if there is no such collision-free path.
Using the five types of paths allows our approach to balance be-

tween search complexity and movement flexibility. First, the larger
the number of types of paths we have, the higher the complexity of
the action spaceA is and the larger the breadth of the search tree is,
which increases the search complexity, although using more types
of paths would allow objects to move in the layout more flexibly.
Second, the fine-graininess of an object’s movement resulting from
following a path affects the length of the move action sequence. The
more fine-grained the movement is, the deeper the search tree is,
and a longer move action sequence needs to be formed to reach the
target layout, although using more fine-grained movements would
allow objects to move in the layout more flexibly. To this end, we use
the five types of paths aforementioned to balance between search
complexity and flexibility of the movements allowed.

4.2.2 Rewards. At moment t , the Scene Mover agent observes the
layout lt and selects an actionat , which is passed to the environment.
An environment simulator e(l ,a) : (L,A) → L and a reward
function r (l ,a) : (L,A) → R are executed to obtain the next layout
lt+1 and reward rt . We define 7 types of rewards whose values are
shown in Table 1. An action results in a reward as per the following:

• Base: Each legal action results in a base negative reward
(penalty), which regularizes themove action sequence’s length.

• Repetition: The action results in a layout that appeared be-
fore.

• First-arrival: By taking the action, an object arrives at its
target position for the first time.

• Multi-arrival: By taking the action, an object arrives at its
target position again (not for the first time).

• First-leave: By taking the action, an object which is currently
at its target position leaves for the first time.

• Multi-leave: By taking the action, an object currently at its
target position leaves again. Note that this object has arrived

Table 1. Rewards used.

Reward Reward
Base -1 First-arrival 4
Repetition -2 Multi-arrival 2
Success 50 First-leave -4

Multi-leave -2

at and then left its target position before. A negative reward
(penalty) is imposed to discourage such repeated leaving.

• Success: After taking the action, all objects have arrived at
their target positions, hence the target layout is achieved.

Note that if an action results in a state that meets multiple criteria
(e.g., Base and Repetition), the resulting reward is the sum of reward
of each criterion.

5 Q-NETWORK
To facilitate expansion and simulation of the MCTS process, our
approach trains a network which approximates the Q-function,
known as Q-network. With the Q-network, the Scene Mover agent
determines which move action it should take to expand the selected
node and how to perform simulation starting from the expanded
node.

Our approach aims to learn a policy based on which move actions
are chosen to maximize the expected future accumulated rewards
for achieving the target layout. The optimal Q-function Q∗

p (l ,a) is
defined as:

Q∗
p (l ,a) = max

π
E[Rt |lt = l ,at = a,π ], (2)

where π is a policy. The subscript p denotes that this Q-function is
approximated by the Q-network as we describe as follows.
Rt is the future accumulated rewards at move action decision

state t . Our approach makes a common assumption that the future
rewards are decayed by a factor over time steps. The accumulated
reward is defined asRt =

∑τ
i=t γ

i−t ri , whereγ is the decay factor set
as 0.95 empirically in our approach to favor learning convergence.
With the layouts being further from the current move decision
state t , their rewards discount more in computing the accumulated
reward Rt . ri is the reward at move decision state i , which is defined
in Table 1. τ is the total number of move decision states.
According to the Bellman equation [Sutton and Barto 2011], if

the optimal value Q∗
p (l

′,a′) of the layout l ′ at the next state is
known for all possible action a′, the optimal strategy for achieving
Eq. (2) is to select the action a′ maximizing the expected value of
r + γQ∗

p (l
′,a′) [Mnih et al. 2015]. Here r is the reward of executing

action a. Eq. (2) can be adapted as:

Q∗
p (l ,a) = r + γ max

a′
Q∗
p (l

′,a′). (3)

We use a convolutional network (referred as the Q-network)
with weights θ to approximate the optimal Q-function Q∗

p (l ,a). The
output of the network is a vector which contains the same number
of entries as the number of move actions in the move action spaceA.
Recall that each move action a =< oi ,p > contains an object oi and
a path p which denotes how it should move (Sec. 4.2). Each entry
of the Q-network’s output vector contains the approximation of
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Fig. 6. Our network structure. (a-b) show the initial and target layouts. (c)
The input of the Q-network includes the feature channels extracted from
(a-b). Furniture objects are highlighted in different colors. (d) The output is a
vector with each entry storing the predicted Q-value of the layout resulting
from taking an action. (e-f) show two examples of move actions.

the optimal Q-function Q∗
p (l ,a) for each move action (i.e., selecting

an object and moving it by one of the five types of paths). Such an
approximation is also referred as the Q-value.

5.1 Network Structure
5.1.1 Input and Output. At time step t , the input of the network

includes an initial layout, a target layout, and the hidden state of
the LSTM layer from the last time step ht−1 as depicted in Fig. 6.

Both the initial layout lI and target layout lT are represented by a
series of feature channels ofM × N matrices. Each feature channel
is used to encode the location and appearance of an object. For a
certain channel, each entry of the matrix corresponds to a cell in
the discretized, grid-representation of the layout discussed in Sec. 4..
The entry stores a 0 if the cell location is unoccupied in the layout;
or a 1 if the cell location coincides with the object that this channel
represents. Suppose there are K objects in the scene. Then there are
2K channels to represent the intial layout and the target layout. An
additional channel is used for encoding the unmovable objects (e.g.,
walls). So there are 2K + 1 channels in total.

The output of the network is the hidden ht , a vector of length
K |A|, with each entry representing the predicted Q-value of taking
a move action, i.e., moving an object by a path.

5.1.2 Structure. The backbone of the Q-network is a convolu-
tional network whose purpose is to regress the optimal Q-function.
To help make long-term decisions, we employ a LSTM layer which
helps to embed the historical information. The structure is shown
in Fig. 6. Given the input described above, for the initial and the
target layout, we first apply a CNN to encode them as feature maps.
The feature maps are flattened to a vector. At last, an LSTM layer is
appended to the concatenated vector as the regressor. Using LSTM
units as the hidden layer helps model temporal causality.

5.1.3 Loss. The weights of the network are updated iteratively.
For iteration i , the network with weights θ (i) is trained by minimiz-
ing the following loss function:

Loss(i) = El,a∼ρ(·)[(y
(i) −Qp (l ,a;θ (i)))2], (4)

where y(i) = r +γ maxa′ Qp (l
′,a′;θ (i−1)) is the update target and ρ

is the distribution over actions a.

5.2 Training
5.2.1 Training Data Synthesis. Taking advantage of reinforce-

ment learning, our approach trains the network with random syn-
thetic layouts. Fig. 7 shows an example of a synthetic layout. A
synthetic layout is synthesized by two steps: obstacle synthesis and
object synthesis.

• Obstacles: Given an empty layout, our approach grows ob-
stacles following the Bernoulli distribution. Specifically, an
obstacle starts to grow from a cell located at the grid bound-
ary following a random initial direction. At each step it grows
one cell along the current direction. It chooses a new direction
to grow with a probability of α and terminates the growth
with a probability of β . In our approach, we use α = 0.5 and
β = 0.2.

• Objects: Each object is represented as a rectangle with a
random size. Using different sizes of rectangles trains the con-
volutional network to handle shape variations. Note that in
the testing experiments the objects can be of non-rectangular
shapes.

The initial and target positions for each object are synthesized
randomly. Our approach uses collision detection during the synthe-
sis to avoid overlapping between objects. There are more than 10k
layouts synthesized automatically for training the Q-network.

Fig. 7. A synthetic layout.

5.2.2 Training Details. The dimen-
sions of the grids of the training layouts
are 64 × 64. We design the network for at
most 25 objects. The input channels are
shuffled during training to enforce the net-
work to learn object-specific correspon-
dences. The length of the output vector is
assigned as 125 (each of the 25 objects has
5 types of move). If there are less than 25
objects, the addtional channels are filling
with zeros. To handle more objects, the length of the output vector
can be increased accordingly.

We adopt ϵ-greedy strategy during training where ϵ = 0.1+ 0.9 ∗
exp(−0.0001 ∗ i) for iteration i . It has ϵ probability to do exploration
which is conducted through a heuristic search method. The batch
size is 64. ADAM solver is used for training with a learning rate of
0.0001. We implemented Scene Mover using Python. The training of
the Q-network was implemented using TensorFlow. The training
took about one day to finish on a machine equipped with an Intel
Core i7-5930K CPU and an NVIDIA TITAN GPU with 12GB RAM.

6 MOVE ACTION SEQUENCE SEARCH
Our approach leverages MCTS incorporated with the trained policy
network to find the move action sequence for a given pair of initial
and target layouts. We introduce the details of the search process.

As described in Sec. 3.1 and Fig. 3, a sequence of search trees are
created to produce a sequence of move actions. To explain how a
search tree is grown based on which the move action decision is
made, we take the t-th iteration as an example.

In this case, a search tree is grown for making the t-th move action
decision. The root node of this tree represents the layout lt . Each
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Table 2. Results of different synthetic layouts.

Layout
No. of Objects
(total/need to move) Size (m ×m) No. of Actions

Living Room 15/10 10.0 × 10.0 30
Gym 10/6 10.0 × 18.5 6
Library 25/18 18.0 × 15.5 79
Restaurant 25/25 20.0 × 20.0 25

node of this tree represents a layout l and stores a Q-value Qm (l)
that refers to the current estimated Q-value of layout l . A number of
rounds (200 rounds in our experiments) are run to grow and update
this tree by adding more nodes and refining the estimated Q-values
Qm (·). Each round includes four steps detailed below:

6.0.1 Selection. Our approach first selects a tree node with the
maximum estimated Q-value to expand. Formally, the selection of
the tree node representing layout l̂ is given by:

l̂ = argmax
l

Q̃(l),

Q̃(l) = Qm (l) + u(l),
(5)

where the Q-functionQm (l) is normalized to [0, 1] by Qm (l )−Qmin+1
Qmax−Qmin+1 ;

Qmin and Qmax are the minimum and the maximum estimated Q-
values in the current search tree respectively. u(l) is a term for
trading off the breadth and depth of the search, which is defined as:

u(l) ∝

√
loд(N (lp ))

1 + N (l)
. (6)

where N (l) and N (lp ) are the numbers of times of visits of the node
representing layout l , and of the node’s parent representing layout
lp , respectively. This formula is derived from UCB1 [Auer et al. 2002]
which aims to balance exploration and exploitation.

6.0.2 Expansion. After the selection, our approach takes a legal
action to expand the selected node representing layout l̂ to create
a new node (expanded node). More specifically, using the layout l̂
represented by the selected node as input, the Q-network is inquired
to estimate the Q-value Qp () of each hypothetical layout created
from layout l̂ by following each of the possible move actions. The
move action â used to create the expanded node is sampled from the
distribution p(l̂ ,a), which depends on the Q-value Qp (l) estimated
by the Q-network,

â ∼ p(l̂ ,a), p(l̂ ,a) = softmax Qp (l̂ ,a). (7)

Then we get the expanded node which represents a layout l (0),
where l (0) = e(l̂ , â). We use 0 in the superscript as it is used as the
initial layout in the simulation step.

6.0.3 Simulation. A simulation is performed from the expanded
node l (0). During the simulation, a sequence ofmove actionsa(0),a(1), · · ·
are performed. Each action a(i) is sampled from the distribution
depending on the Q-values estimated by the Q-network:

a(i) ∼ p(l (i),a).

The simulation stops if the layout reaches the target layout (i.e.,
l (i) = lT ) or the simulation reaches a maximum number of steps

Fig. 8. Synthetic scenes. Please refer to our supplementary video for the
generated move action sequences.

allowed (20 steps allowed in our experiment). The simulation returns
an accumulated reward to the expanded node:

Qm (l (0)) =
D∑
i=0

γ ir (l (i),a(i)), (8)

where D is the number of simulation steps.

6.0.4 Back Propagation. After the simulation, the current es-
timated Q-values Qm () stored at the nodes are updated from the
expanded node via its ancestor nodes to the root node recursively.
For a node representing layout l , its estimated Q-value Qm (l) is
updated as:

a∗ = argmax
a

Qm (e(l ,a)),

Qm (l) = γQm (e(l ,a∗) + r (l ,a∗),

N (l) = N (l) + 1.

(9)

6.0.5 Move Action Decision. After a certain number of rounds,
the growing of the search tree at the t-th iteration completes. The
best action a∗t of the root node is chosen as the move action to apply:

a∗t = max
a

Qm (e(lt ,a)). (10)

We include the pseudocode of an iteration of Scene Mover’s MCTS
in the supplementary material.

7 EXPERIMENTS

7.1 Synthetic Scenes
We tested Scene Mover on four synthetic scenes, consisting of a
living room, a gym, a library, and a restaurant. Both the initial and
the target scenes are shown in Fig. 8. Each scene has a different
layout furnished with various furniture. Some details are reported in
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Fig. 9. “Smart moves” performed by Scene Mover in the living room example. (a) Initial layout. (b) To make way for the dining table to reach its target position,
Scene Mover moved the obstacles, highlighted by a yellow dashed bounding box, to the lower-left corner, and then moved the bench to the lower-right
corner. (c) Scene Mover moved the dining table to its target position. (d) Layout after moving the dining table. (e) Target layout. The areas to be swapped are
high-lighted by the pink and green box in (a) and (e).

Fig. 10. Adding furniture to an existing layout. (a) A refrigerator (in cyan)
needed to move to its target position in the kitchen. (b) The intermediate
layout before the refrigerator was moved to its target position. Note that
Scene Mover moved some existing furniture objects (in red dashed boxes) to
make way for the incoming object.

Table 2. Note that not all objects change their locations between the
initial and the target scene. For example, the library has 25 furniture
objects in total, of which 18 objects change their locations.

In the generated move plans, we observe some interesting actions.
Take the living room shown in Fig. 9 as an example. To make way
for the dining table, as shown in Fig. 9(b), Scene Mover moved the
obstacles (square table, chairs, desk, etc.), highlighted by a yellow
dashed bounding box, to the lower-left corner. After that, it moved
the bench to the lower-right corner and then moved the dining table
to its target position as shown in Fig. 9(c).

7.2 Adding Furniture to an Existing Layout
People buy new furniture to refurnish their homes sometimes. Scene
Mover can be employed to add new furniture to an existing layout.
Fig. 10 shows an example. A new refrigerator needs to be moved
from the entrance to its target position in the kitchen. Though all
other objects stay at their original positions in the new layout, they
could be temporarily moved to give way to the refrigerator.

In this example, Scene Mover moved the refrigerator to its target
position through 11 move actions. Specifically, 6 move actions were
performed to make way for the refrigerator, e.g., moving 3 chairs
and the dining table away from their original positions (highlighted
by red dashed bounding boxes in Fig. 10(b)). After the refrigerator
had reached its target position, each moved object were moved back
to its original position.

Fig. 11. Furnishing a vacant house. (a) Initial layout with many furniture
objects in the front yard waiting to be moved. (b) Target layout where the
objects have been moved to their target positions by Scene Mover.

7.3 Furnishing a Vacant House
For moving a house, the Scene Mover agent is capable of generating
a move plan automatically to furnish a vacant house. Fig. 11 shows
such a scenario, where a van has unloaded all furniture in the yard
waiting to be moved inside the house.

To tackle this situation, we extend the range of the initial layout
by setting a boundary to cover both the house and the yard region
as shown in Fig. 11(a). There are 15 furniture objects in total. The
Scene Mover agent took 35 move actions to move all furniture into
the house to realize the target layout as shown in Fig. 11(b).

In this special scenario, the Scene Mover agent needs to consider
object placement and movement both outside and inside the house,
which may have conflicts with each other. Intuitively, it would be
convenient to move the objects near the entrance inside the house
first so as not to obstruct other objects’ from entering the house. On
the other hand, it is important to consider the target positions of
such objects in case placing them early would obstruct the other
incoming objects. For example, moving the white bench (which
is far away from the entrance) to its target position (bottom-right
corner of the house) late might fail, as it could be blocked by other
objects (e.g., the dining table) near the entrance. We observed that
Scene Mover tended to first move the objects (e.g., armchair, desk)
whose target positions were at the room corners, which would not
obstruct the other incoming objects.

7.4 Terrain Constraints
When arranging furniture in a house we may have to consider some
terrain constraints. Take the layout in Fig. 12(a) as an example, which
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Fig. 12. Terrain constraints. (a) A two-story house with a swimming pool in the yard. (b) The house is flattened into one plane. The orange region refers to the
stairway. The gray region enclosed by the yellow rectangle refers to the swimming pool. (c) Initial layout. (d) Target layout.

shows a two-story house with a swimming pool in the yard. There
are two terrain constraints: (1) furniture may locate on different
floors and the stairway is the only passageway connecting the two
floors; (2) the swimming pool is not passable.
To handle the terrain constraints, we represented the problem

as a restricted move planning problem and solved it by the Scene
Mover agent. The initial and target layouts were preprocessed by
two steps. First, the two floors were flattened into one plane as
shown in Fig. 12(b). The two floors were separated by unmovable
walls and the stairway (orange region) connected the two floors.
Second, the unreachable region was bounded by unmovable walls
and no path could cross them. In Fig. 12(b), the pool is enclosed by
a yellow rectangle which represents the bounding walls added.

7.5 Travel Length Constraint
We can extend our approach to handle different practical scenarios
by incorporating additional terms in the reward scheme of theMCTS.
For example, we may prompt Scene Mover to generate a move plan
that involves less movement effort characterized by a short travel
length by adding a term to the reward as a soft constraint.
Specifically, since a layout is represented as a N × M grid, we

estimate the distance between two cells by their Manhattan distance.
The travel length is defined as the accumulated distance along the
path connecting the cells. In the t-th action, assume that the travel
length in the single move at is Lt . We add a term−λlogLt to penalize
the travel length, where λ is a trade-off parameter to balance the
travel length’s penalty (i.e., a negative reward) with the existing
rewards. The goal in Eq. 1 can be extended as:

argmax
A

∥A∥∑
t=1

r (lt ,at ) − λlogLt . (11)

In our test, we set λ = 0.5. It is worth noting that we applied
this soft constraint term in MCTS instead of in training the Q-
network. We trained the Q-network to estimate Q-values for the
fundamental task, i.e. realizing the target layout. The trained Q-
network can then be used modularly. It can cooperate with specific
constraints incorporated in the MCTS framework, such as the travel
length constraint in this example, to handle specific considerations
as needed. This modular design provides flexibility and convenience
for extending our approach to handle different considerations.
To examine the effectiveness of the travel length constraint, we

performed an evaluation to compare the travel lengths of the move

Table 3. The average travel length, number of steps and travel length per
step of our approach with and without the travel length constraint.

Agent Ave. TL Ave. # of Steps Ave. TL/Step
Scene Mover 588.4 15.0 39.4
Scene Mover (constraint) 573.2 15.8 36.2

plans generated by Scene Mover with and without using this con-
straint. We randomly generated 20 layouts as the testing set where
each layout contained 13 objects.

Table 3 shows that with the travel length constraint, the average
travel length decreased by 15.2 and the average travel length per
step decreased by 3.2, while the average number of steps increased
by 0.8. The decrease in the average travel length indicates that the
constraint term prompts Scene Mover to choose some plausible ac-
tions with shorter travel lengths. The objective of using fewer steps
and achieving a shorter travel length could be contradictory some-
times, which caused the number of steps to increase as the average
travel length decreased after adding the travel length constraint.
The objective can be controlled through the trade-off parameter λ,
i.e., a larger λ results in move plans with shorter travel lengths.

8 EVALUATION ON SYNTHETIC LAYOUTS
In this section, we validate the effectiveness of our approach by
comparing it against other agents and conducting an ablation study.
We investigate the performance of Scene Mover and other agents
under different difficulty levels. To facilitate quantitative analysis,
we experimented on synthetic layouts, whose difficulty level can
be controlled by adjusting the number of the objects in a scene. We
validate our approach on real-world layouts in Sec. 9. All the results
on synthetic layouts and real-world layouts in the quantitative eval-
uations were produced using one trained Scene Mover. It is worth
noting that all the results of the compared approaches come from
the best of multiple runs.

8.1 Data
The difficulty of generating a move plan generally increases with
the number of objects present in the layout. In this experiment, we
designed 4 difficulty levels corresponding to layouts with 5, 9, 13,
and 17 objects, respectively. Fig. 13 shows some example layouts.
More specifically, for each difficulty level, we randomly synthe-

sized 40 layouts containing a fixed number of objects of that level.
Each object was a rectangle with random dimensions. The initial
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and target positions of the objects were also randomized. In total,
we synthesized 160 layouts (4 levels × 40 layouts). We used half of
the layouts in each level for training and the rest for testing.

8.2 Comparison
8.2.1 HumanAgent. To investigate human performance in achiev-

ing the move planning task, we developed a Scene Mover mobile
game to collect data of human participants. In the game, an ini-
tial layout and the target positions of all objects were shown to
participants. The participants moved all objects to their target po-
sitions through selecting an object and taking one of the 5 given
paths, which were consistent with the ones in Scene Mover and other
agents so as to compare. The participants were asked to finish the
task using as few steps as possible. There was a maximum of 100
move actions allowed and the participants would be ranked for each
difficulty level by the number of the used move actions.

Before starting the game, each participant went through a famil-
iarization process, where the participant learned about the mission
(moving all objects to the target positions), the rules (selecting an
object and applying one of the 5 paths), and the game control (click-
ing for selecting an object and swiping for choosing a path to apply).
The participant would pass the game from the easiest level (5-objects
layout) to the most difficult level (17-objects layout), one by one. In
each level, one layout was randomly assigned to the participant to
solve. The participant could access the next level only after he had
passed the current level.

8.2.2 Heuristics Agent. The Heuristics agent was devised based
on the naive rule-based heuristic search method. We designed 3
intuitive heuristic rules as follows.
Rule 1: If an object can be moved to its target position through

the p5 path (i.e., a collision-free path to the target position exists),
select the object and move it along the p5 path.

Rule 2: If multiple objects can be moved to their target positions
through the p5 path, randomly select one of them to move.

Rule 3: If no object can be moved to its target position through the
p5 path, randomly select an object and one of the 4 straight paths
(i.e., p1, p2, p3, or p4) to move.

Note that althoughmore heuristic rules could be included, it could
be difficult to decide which rule to apply based on the current layout
due to the complication of sequential decision-making.

8.2.3 MCTS Agent. MCTS was used as the backbone in the prior
robotics works[King et al. 2017; Labbé et al. 2020]. Following these
works, our MCTS agent was implemented based on a classic MCTS
framework without a Q-network akin to [Chaslot et al. 2008]. The
heuristic rules used by the Heuristics Agent were applied to enhance
the expansion and simulation steps.

The MCTS agent followed a similar search process as that of the
Scene Mover agent and used the same settings: a sequence of search
trees were created to generate a move action sequence. At each
iteration, an MCTS search tree grew and got updated for 200 rounds
to form a final tree based onwhich amove actionwas determined. At
each round, the simulation stopped if the simulated layout reached
the target layout or if a limit of 20 simulation steps were reached.

Fig. 13. Examples of the four difficulty levels.

8.3 Results and Analysis
8.3.1 Metrics. We used a match score mechanism to evaluate

the agents’ performances in generating move plans. There were
12 matches totally (3 compared agents × 4 difficulty levels). Each
match comprised 20 layouts of the same difficulty level and was
played by two agents, e.g., Scene Mover vs. Human.
In a layout, if an agent outplayed another agent, it received one

point. If two agents played even, it was a draw and no agent would
receive a point. The win and draw conditions in a layout were : (1) if
both agents succeeded in generating a feasible move plan, the agent
whose move plan had fewer move actions won; (2) If both agents
succeeded and their move plans were with the same number of move
actions, it was a draw; (3) If neither of the two agents succeeded,
i.e., not reaching the target layout within 100 move actions allowed,
it was a draw. Table 4 shows the scores of the 12 matches between
the Scene Mover agent and the other three agents.

We calculate the success rates for each difficulty level. If an agent
used up the maximum number of 100move actions without reaching
the target layout, this would be regarded as a failure. Table 5 shows
the success rates of the four agents for different difficulty levels.

8.3.2 Comparison with Human Agent. From the Scene Mover
game, we collected 1, 191 playing records from 362 participants.
Most participants were university students. We observed that some
participants gave up at a certain difficulty level, which might happen
as they found the level too difficult. 42 participants passed all four
difficulty levels, who were probably more skilled than others who
gave up in a low difficulty level. To make our comparison strict, only
the data of these 42 skilled participants were used in calculating the
scores. The median length of the move action sequences created by
them was compared with the Scene Mover agent’s result.
As Table 4 shows, the Scene Mover agent achieves better perfor-

mance on most layouts comparing to human participants because
human participants generally made some “trial” move actions (e.g.,
redundant or unnecessary move actions) to come up with a move
plan, resulting in a longer action sequence.
In the easier levels of 5-obj and 9-obj, there are 4 layouts where

human participants were able to find more optimal solutions than
Scene Mover. Nevertheless, for the more difficult levels (13-obj.),
SceneMover outplayed the human agent in all layouts as the situation
became much more complicated for human. For the most difficult
level (17-obj.), the human agent still won in some layouts, which
was reasonable as we compared Scene Mover with only the skilled
participants rather than all participants. The boxplot in Fig. 14 shows
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Table 4. Comparing Scene Mover with other agents in different difficulty
levels. Each entry shows a score in the format of A:B, where A and B refer to
the numbers of wins of Scene Mover and the compared agent, respectively.
We exclude those layouts where the two agents played even in calculating
the scores.

Agent 5-obj. 9-obj. 13-obj. 17-obj. Total
Scene Mover vs. Human 17:3 18:1 20:0 17:3 72:7
Scene Mover vs. Heuristics 12:4 19:1 20:0 18:0 69:5
Scene Mover vs. MCTS 3:5 16:1 17:0 17:1 53:7

Table 5. Success rates of different agents in different difficulty levels.

Agent 5-obj. 9-obj. 13-obj. 17-obj.
Human 100% 54% 43% 12%
Heuristics 100% 90% 50% 15%
MCTS 100% 100% 95% 70%
Scene Mover 100% 100% 100% 90%

that Scene Mover achieved lower medians compared to the human
agent over all difficulty levels.
We also investigate the success rates in Table 5. Note that the

success rates were calculated over all 362 participants. It shows that
with an increased level of difficulty the move planning task becomes
more challenging for ordinary humans. We note that even though
some skilled human participants could finish the difficult levels, it
usually took them a significant amount of mental efforts to figure
out a feasible move plan. As Scene Mover could generate a move plan
automatically, it could help humans create move plans especially
for layouts with many objects.

8.3.3 Comparison with Heuristics Agent. In the matches with
the Heuristics agent, the Scene Mover agent won all 4 matches and
achieved a total score of 69:5 as shown in Table 4. We observe that
in the level with the fewest objects (5-obj.), the Heuristics agent and
Scene Mover agent played 4 draws, whereas they played 1 draw in
the 9-obj. level. Table 5 shows that for the 5-obj level, the Heuristics
agent could find move plans for all layouts. However, the success
rate decreased as the difficulty level increases.
The boxplot in Fig. 14 shows that Scene Mover attained much

lower medians compared to the Heuristics agent in the levels of 9-
obj., 13-obj., and 17-obj.. Note that in the 17-obj. level, the Heuristics
agent frequently failed to solve the task within the limit of 100
actions (15% success rate) so the median shown was 100.
The results show that the heuristic approach could handle the

move planning tasks well in low difficulty levels with a smaller num-
ber of objects. However, solving more difficult moving tasks might
require defining a more sophisticated set of rules. The results also
support that Scene Mover is capable of finding a feasible move action
sequence, and the advantage becomes more apparent in tackling
more difficult levels with more objects.

8.3.4 Comparison with MCTS Agent. The Scene Mover agent
outplayed the MCTS agent overall in the matches of the 3 difficulty
levels (9-obj., 13-obj., and 17-obj.). It achieves a total score of 53:7
as shown in Table 4. In the 5-obj. level, the MCTS agent and the
Scene Mover agent performed similarly in terms of the match score.
This is also supported by the statistics of the lengths of move action

Fig. 14. A boxplot showing the statistics of the length of move action se-
quences computed by the Scene Mover, MCTS, Heuristics, and Human agent
over the 4 difficulty levels. The black horizontal lines, bottom edges, and top
edges of the boxes show the median length of the move action sequence,
25th percentiles, and 75th percentiles, respectively. The whiskers extend to
the farthest data points not taken as outliers. Dots denote outliers.

sequences shown in Fig. 14, where both the Scene Mover agent and
the MCTS agent had a median of 5 move actions.

As the difficulty increased, the Scene Mover agent showed advan-
tages. In the 9-obj. level, the score of 16:1 (Scene Mover vs. MCTS)
reveals a marked difference of the two agents’ performances. The
medians of the Scene Mover and MCTS agents are 9 and 12 move
actions. In the level of 13-obj. and 15-obj., the Scene Mover agent still
maintained its lead in the matches. The scores of the Scene Mover
vs. MCTS agent are 17:0 and 17:1, respectively. The medians of the
Scene Mover agent and the MCTS agent are 14 and 22 in the 13-obj.
level, while the medians are 35 and 43 in the 17-obj. level.
Table 5 shows that the success rates (100%) of the Scene Mover

agent equate those of the MCTS agent in the 5-obj. and 9-obj. levels.
The MCTS seems to enable it to escape from a local minimum in
some situations with a random action selection strategy. In the most
difficult 17-obj. level, the Scene Mover agent with a 90% success rate
outperforms the MCTS agent with a 70% success rate.

We believe the Q-network of the Scene Mover agent contributed
to its more superior performance. During a search, the Q-network
facilitates the expansion and simulation steps of the MCTS process
bymaking good estimates of the optimalmove action to take, leading
to a more efficient search.

8.4 Ablation Study
The performance of Scene Mover depends a lot on the expansion
and simulation steps, which are facilitated by using a Q-network.
We study the effectiveness of the designed Q-network realized by a
LSTM module in our framework.

We compared 4 policies, namely, Random, Heuristics, CNN, and
LSTM. We first tested each policy on completing the move task.
For each policy, in each step, we randomly selected one action to
perform (Random), applied heuristic rules to select an action (Heuris-
tics), selected the action with the maximum Q-value estimated by
CNN (CNN), or selected the action with the maximum Q-value esti-
mated by LSTM (LSTM). If the move tasks could be completed well
with one policy, applying such a policy would help to improve the
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Table 6. Success rates of different agents. Rows 3-4 refer to the neural
networks-based agents. Rows 5-8 refer to the MCTS-based agents.

Agent 5-obj. 9-obj. 13-obj. 17-obj.
Random 5% 0% 0% 0%
Heuristics 100% 90% 50% 15%
CNN 0% 0% 0% 0%
LSTM 100% 70% 35% 20%
MCTS + Random 100% 45% 15% 0%
MCTS + Heuristics 100% 100% 95% 70%
MCTS + CNN 30% 0% 25% 5%
MCTS + LSTM (Scene Mover) 100% 100% 100% 90%

performance in the expansion and simulation steps of the MCTS
and hence improve the performance of the solution search.

The results are shown in Table 6. The CNN agent fails to finish any
layout since it can only act according to the current state without the
ability of making long-term decisions. The Random agent performs
poorly like the CNN agent. The Heuristics agent and the LSTM
agent achieve 100% success rate in the 5-obj. level. In the 9-obj. and
13-obj. levels, the Heuristics agent outpeforms the LSTM agent, but
in the 17-obj. level, the LSTM agent achieves a better success rate.
Due to the complexity of the layouts in the 17-obj. level, the agent
has to make long-term decisions to complete the move task. The
higher success rate of the LSTM agent could be explained by its
better ability to make long-term decisions.

Additionally, we compared the performances of the MCTS frame-
work embedded with each of the policies. Table 6 shows the results.
MCTS + CNN performs worse than MCTS + Random where the
actions in the expansion and simulation steps are randomly sampled.
In the 5-obj. level, MCTS + CNN only achieves 30% success rate
while MCTS + Random achieves 100%. The CNN network seems
to provide priors even worse than random sampling as it fails to
correlate the states between time steps. MCTS + LSTM (Scene Mover)
outperforms all other agents especially in 13-obj. and 17-obj. levels.
Note that although the LSTM agent performs worse than the Heuris-
tics agent in policy comparison in the 13-obj. level, the Scene Mover
agent achieves better success rate. It shows that the Q-network with
a LSTM layer learns good priors in training.

9 EVALUATION ON REAL-WORLD LAYOUTS
We tested our approach on real-world layouts for solving scene
arrangement problems. As humans may use prior knowledge of
real-world layouts to facilitate move planning, we compare the
performance of humans and Scene Mover on real-world layouts.

9.1 Real-World Layouts
We selected 20 indoor scenes from the ScanNet dataset [Dai et al.
2017] as the testing set, covering a variety of 3D reconstructed scenes
with rich annotations. The number of objects in a scene was 11 on
average, ranging from 6 to 19. The objects in the scenes are normal
furniture with general shapes like rectangle, circle, triangle, “T”, “L”,
etc.. Some novel shapes in the scenes are the combinations of the
basic shapes. The shapes vary by scale and aspect ratio. Fig. 15(a)
shows two example scenes. As the objects of the raw 3D scanned
scenes were segmented and annotated, we obtained initial layouts
using the segmentation and annotation as shown in Fig. 15(b). For

Fig. 15. Real-world layouts. Different objects are shown in different colors.
The unmovable objects (e.g., walls) are shown in gray. The supplementary
video contains the move action sequence generated for each layout.

each initial layout, we designed a target layout with the same objects
as shown in Fig. 15(c).
To collect human manipulation data for analysis, we designed a

mobile game akin to the Scene Mover game discussed in Sec. 8.2.
The player needed to change an initial layout to its target layout via
a series of manipulations. We designed a user-friendly interface to
facilitate object manipulation so that the player could focus on the
move task itself. The player could drag an object anywhere as long
as the object does not hit any obstacle on its trajectory. The player
could also rotate an object on the 2D plane. We collected 389 playing
records from 84 participants in total. Refer to our supplementary
material for more details about the data.

9.2 Comparison
We compared the performances of Scene Mover and human partici-
pants using three metrics: success rate, average number of steps, and
average travel length. Success is defined using the same metric as in
Sec. 8.3, i.e., reaching the target layout within 100 move actions. As
a player could drag and rotate objects separately, for a fair compari-
son on the number of steps, a continuous series of manipulations
on the same object was counted as one step. For each scene, we
calculated the median number of steps and the median travel length
from the participants’ results. The overall average number of steps
was calculated by averaging the number of steps medians of the 20
scenes used. The average travel length was calculated similarly.

Table 7 shows the results. Scene Mover attained a success rate of
100% while the participants attained a success rate of 83.7%. Scene
Mover used 13 steps on average to complete the moving, which is
less than the participants’ average steps of 15.7. Scene Mover tended
to give better global solutions. Scene Mover used a much shorter
average travel length of 201.4while the participants used an average
travel length of 681.5. The travel length results could be explained
from two perspectives. First, using more steps generally resulted in
a longer travel. Second, when the participants moved the objects in
a scene with obstacles, they rarely used the shortest path, resulting
in a longer travel. In the supplementary material, we show more
details about the participants’ failure cases.

The results show that our approach can generate move plans for
real-world layouts and can work with general shapes. Though the

ACM Trans. Graph., Vol. 39, No. 6, Article 233. Publication date: December 2020.



233:14 • Hanqing Wang, Wei Liang, and Lap-Fai Yu

Table 7. Performances of human participants and Scene Mover.

Success Rates No. of Steps Travel Length
Humans 83.7% 15.7 681.5
Scene Mover 100.0% 13.0 201.4

objects used in training were rectangular, they varied in length and
width. The combination of rectangular objects constructed many
different shapes in the hidden layers of the CNNs, which probably
helped the CNNs generalize to irregular shapes.

SceneMover may complement 3D reconstruction algorithms [Wang
et al. 2019b], scene synthesis algorithms, and robotics techniques to
realize move tasks in the real world. For example, one may recon-
struct a real-world scene as an initial layout, followed by a scene
synthesis algorithm to rearrange the furniture to create a target
layout. Scene Mover can be applied to generate a move action se-
quence via which a robot moves all objects, step by step, to their
target positions.

10 CONCLUSION
In this paper, we address a novel problem of automatic move plan-
ning for scene arrangement. We propose the Scene Mover agent,
which uses a deep reinforcement learning-based MCTS approach to
find a feasible move action sequence. By automatically generating a
move plan, the Scene Mover agent could complement scene synthesis
algorithms for realizing a synthesized layout design. Experiments
on both synthetic and real-world layouts show that Scene Mover can
generate move plans to tackle arrangement scenarios automatically.
To discover the policies picked up by our approach, we summarize
the moving strategies by analyzing the results of some cases in our
experiments and providing an empirical explanation.

10.1 Limitations and Future Work.
Fig. 16 shows an example that Scene Mover failed. In this case, only
the objects in green and purple can be directly moved to their target
position at the beginning. By taking those actions, Scene Mover gets
good short-term rewards but also be trapped in a difficult situation,
where the objects on the top (i.e., the objects in blue, orange, and
yellow) are blocked. We show the intermediate layouts at the 90th
iteration where Scene Mover falls into a local minimum. If the green
object is not moved to make way for the orange object, the orange
object can never reach its target position. Such a corner case shares
similarity with constrained “puzzle” problems, whichmight be better
solved if our network is trained with more “puzzle” scenarios. Some
strategies might be helpful for jumping out of the local minima,
e.g., introducing randomness at the expansion steps in growing the
search tree. More sophisticated reinforcement learning scheme such
as Advantage Actor-Critic (A2C) [Haarnoja et al. 2018; Mnih et al.
2016] could also help enhance the network’s performance, exploring
the state space more thoroughly to avoid getting trapped in poor
local minima [Shen et al. 2018]. Our current framework only models
situations where objects have no overlap in the vertical direction. In
future work, we can modify the representation to store the object’s
height instead of occupancy in the grid of a channel. The overlap
problem in the vertical direction can be solved by modifying the
collision detection mechanism without changing other modules.

In our experiments, we trained Scene Mover to move a maximum
of 25 objects, which is sufficient to illustrate our core idea. To train

(a) Initial Layout (c) Target Layout
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Fig. 16. A failed “puzzle” case of Scene Mover. When the object in green is
moved to its target position at the beginning, the object in orange is blocked
and many steps of action are needed to make way for it.

this model, the maximum number of objects in the training scenes
is 25. We also tried to train the model with fewer objects, i.e., at
most 17, 13, and 9 objects in the scene. In this experiment, Scene
Mover shows limited generalizability in terms of object count. We
observed an obvious performance drop on the model trained with
at most 9 objects while the models trained with 17 and 13 objects
have marginal performance drop. It means that the model fails to
capture the essential factor of complex layouts when it is trained
in relatively simple scenes. If needed, Scene Mover could be trained
to handle more objects by increasing the number of outputs of
its network. In future work, It would be interesting to investigate
Scene Mover’s performance in handling large-scale scenarios with
many objects (e.g., hundreds of objects) and obstacles to shed light
upon applications such as warehouse automation, urban design, and
urban planning. More efforts can be given to the interpretability of
the strategy that the network learned.
In this work we focus on generating a feasible move plan for

transforming an initial layout into a target layout. Note that such
feasible move plans are generally not unique and Scene Mover just
finds one solution upon each run. In future work it would bring
practical benefits to regularize and qualify the generated move plans
further. For instance, additional constraints such as average load and
number of turns could be incorporated into the MCTS framework
in a similar fashion as the travel length constraint (Sec. 7.5).

We devise amove planning approach to automate scene rearrange-
ment. Future works may integrate the high-level move planning
approach with object-level, human-centric action space considera-
tions [Ma et al. 2016; Savva et al. 2016] for executing the plan.

It would also be interesting to devise deep reinforcement learning-
based approaches to tackle other graphics and design problems. For
example, such approaches could be applied for assembly-based mod-
eling: given an initial 3D object and a target 3D object comprising
the same set of components (e.g., Lego bricks), one may train a rein-
forcement learning agent to generate a disassembly and assembly
plan to transform the initial object into the target object. Such an
approach may bring new insights for re-configurable design. An-
other avenue for future extension is to incorporate Scene Mover into
robots for physically realizing procedurally-generated designs.
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